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Abstract. The table of irregular primes less than 30000 has been computed and 
deposited in the UMT file. The fraction of irregular primes in this range is 
0.3924, close to the heuristic prediction of 1 -e 112. Fermat's Last Theorem 
has been verified for all prime exponents p < 30000, and the cyclotomic in- 
variants ,p, Xp, and vp of Iwasawa have been completely determined for these 

primes. The computations show that for p in this range, A,p = 0 and the in- 
variants Xp and vp both equal the index of irregularity of p. 

1. Historical Summary and Introduction. It has been roughly 125 years since 
Kummer proved his monumental theorem that the Fermat equation xP + yP = ZP 

has no nontrivial integral solutions for regular prime exponents p. A prime p is 
called regular if it does not divide the numerator of any of the Bernoulli numbers 
B2, B4, * * , Bp_3. This condition is equivalent to the assumption that p does not 
divide the class number of the cyclotomic field obtained by adjoining a primitive pth 
root of unity to the rational field. A detailed exposition of these results appears in 

[1]- 
Kummer himself began the search for the primes to which his proof of the 

Fermat conjecture did not apply. By 1874 he had determined that exactly 8 of the 
37 odd primes less than 165 are irregular, including the prime 157, the first prime 
which divides the numerators of two of the Bernoulli numbers in question. With the 
aid of desk calculators, Vandiver and his associates [23] continued the computations 
to 617 in the 1930's. By 1955, Vandiver, D. H. Lehmer, E. Lehmer, Selfridge and 
Nicol [12], [24], [17] had completed the computations to 4001 on the SWAC 
computer at Los Angeles. In 1963, D. H. Lehmer [11] reported statistical results to 
10000, and in 1964 Selfridge and Pollack [18] announced completion of the table to 
25000 on the IBM 7090 at UCLA. These latter tables have not appeared in print. In 
1970, Kobelev [10] published the table to 5500 and this was extended to 8000 by 
the author [8] in 1973. 
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We have now managed to complete the table of irregular primes to 30000. This 
entire table, together with several other important tables which depend upon it, has 
been deposited in the UMT file. These latter tables involve a test for Fermat's Last 
Theorem, an examination of the numerators of the Bernoulli numbers, and the deter- 
mination of the cyclotomic invariants of Iwasawa. 

We use the "even-index" notation for the sequence of Bernoulli numbers, Bn. 
If p is an irregular prime and p divides the numerator of the Bernoulli number 
B2k for 0 < 2k < p - 1, we shall refer to (p, 2k) as an irregular pair. For a given 
prime p, the number of such pairs is called the index of irregularity of p. 

2. Fermat's Last Theorem. Various numerical tests have been devised to verify 
Fermat's Last Theorem in the case of an irregular prime exponent. Kummer himself 
worked on the irregular case and claimed a proof of the Fermat conjecture for the 
three irregular primes < 100. His theoretical results were later questioned and cor- 
rected by Vandiver [20], [21], [22]. With the advent of digital computers, the work 
of Vandiver led to the following criteria for the irregular case: 

THEOREM [12]. Let p be an irregular prime, and suppose P = rp + 1 is a 
prime satisfying P <p2 _p. Let t be any integer such that tr p 1 (mod P). For 
an irregular pair (p, 2k), form the product 

Q2* = trd/2 n (trb - 1)bP-1-2k 

b=1 

where m = (p - 1)/2 and d = F=1np-2k. If Q2*r l (mod P) for all such 
irregular pairs, then Fermat's Last Theorem holds for exponent p. 

We have used the theorem above to verify the Fermat conjecture for all prime 
exponents p < 30000.' The numerical results are included in the table deposited in 
the UMT file. In all cases, it was sufficient merely to use t = 2 and the minimal 
prime P with the required properties. While such primes P readily occur with 
values of r quite small compared to p, the existence of even one such P has not 
been proved. 

Some interesting theorems proved in the nineteenth century give sufficient con- 
ditions for Fermat's Last Theorem in the first case, when p does not divide any of 
the integers x, y, z. According to Dickson [2, p. 742], in 1852 Genocchi used a 
theorem of Cauchy to prove that the first case is true for exponent p provided 
(p, p - 3) is not an irregular pair. Kummer showed in 1857 that for the first case 
it is sufficient to establish that either (p, p - 3) or (p, p - 5) fails to be an ir- 
regular pair. In 1905 Mirimanoff extended the result still further to include the 
pairs (p, p - 7) and (p, p - 9). 

Our most surprising discovery to date has been that (p, p - 3) is in fact an ir- 
regular pair for p = 16843. This is the first and only time this occurs for p < 

30000. In addition, we found in our range that (p, p - 5) is an irregular pair for 
p = 37 only, (p, p - 9) is an irregular pair for p = 67 and p = 877 only, while 
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there is no example of an irregular pair of the form (p, p - 7). It has been known 
for a long time that consecutive irregular pairs (those of the form (p, 2k) and 

(p, 2k + 2)) occur for p = 491 and 587. We found no other examples of this for 
p < 30000. Thus there are no known examples of three or more consecutive irregular 
pairs, a situation that must exist if the Fermat equation is to have a nontrivial solution 
in the first case. 

3. The Distribution of Irregular Primes. Siegel [19], basing his argument on the 
assumption that the residues of the Bernoulli numbers are randomly distributed mod 
p, predicted that the ratio of irregular primes to primes approaches the limit 1 - 

e-l /2 = 0.3935. This limit was also mentioned by Lehmer [11] in his report of the 
computations to 10000. We have found that 1273 (39.24%) of the 3244 odd primes 
less than 30000 are irregular. A generalization of Siegel's argument predicts that the 
irregular primes of index k satisfy the Poisson distribution Xke X/k! with X = 2. 

Assuming such a distribution we can calculate the expected number of primes of each 
index within our range. The table below compares the actual data with these predic- 
tions: 

Observed Expected 
Index = 0 1971 1967.59 
Index = 1 974 983.79 

Index = 2 254 245.95 

Index > 3 45 46.67 

Total 3244 3244.00 

Testing this data for goodness of fit by the x2 statistic, we obtain the small value 
0.4266. 

Jensen proved in 1915 that there are infinitely many irregular primes of the 
form 4n + 3 (cf. Vandiver [25]). It is still not known, however, if there are in- 
finitely many regular primes, or whether the Fermat conjecture is true for infinitely 
many prime exponents. 

We found only two primes, 12613 and 15737, which have index 4, and none 
with index > 5, confirming the report of Selfridge and Pollack [18] . It is likely 
that the index is unbounded over all primes p, although this has not been proved. 
One might hope to prove that there are infinitely many irregular primes of index 
> 2, but no proof of this is known either. 

Montgomery [16], extending Jensen's theorem, proved that there are infinitely 
many irregular primes not congruent to 1 (mod N) for any modulus N > 3. No 
modulus N > 3 is known for which we are certain that the residue class of 1 

(mod N) contains infinitely many irregular primes, although Metsankyla [13] has 
shown that this is true for either N = 3 or N = 4. Metsankyla [15] has also 

proved that for N > 3 there are infinitely many irregular primes not congruent 
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to k (mod N), where k runs through a proper subgroup of the reduced residue 
classes (mod N). 

Our computations show that the irregular primes seem to be distributed quite 
evenly among the reduced residue classes of various moduli N. We found, for example, 
that within our range exactly 624 (38.73%) of the 1611 primes of the form 4n + 1 
are irregular, while 649 (39.74%) of the 1633 primes of the form 4n + 3 are irregular. 
For N = 60, similar data ranges from a low of 66 (33.17%) of the 199 primes of 
the form 60n + 1 to a high of 91 (43.75%) of the 208 primes of the form 60n + 
17. 

We did not find an example of an irregular pair (p, 2k) for which p2 divides 
the numerator of the Bernoulli number B2k. In fact, all of the properties of the 
Bernoulli numbers reported previously by the author [9] remain true for the irregular 
primes p < 30000. The table of [9], which is only partially presented there, has 
now been completed to 30000, and the results are included in our table deposited in 
the UMT file. 

4. The Cyclotomic Invariants of Iwasawa. If p is an odd prime and Fn 
denotes the cyclotomic field of pnf+ 1th roots of unity over the rational field, we 
let pe(n) be the exact power of p which divides the class number hn of Fn. 
Iwasawa [4] has shown that there exist integers ,p > 0, Xp > 0 and Ip such that 

e(n) = i,p pn + ? n + ?p 

for all n sufficiently large. It is knawn that p = Xp = ip = 0 for a regular prime 
p. Iwasawa and Sims [7] computed the cyclotomic invariants Mp, Xp, and vp and com- 
pletely determined the structure of the p-Sylow subgroup of the ideal class group of 

Fn for the irregular primes p < 4001. Their computations imply that Ap = 0, 
while "p and vp both equal the index of irregularity of p for all such primes p. 
We have now completed these computations to 30000, and the results of Iwasawa 
and Sims remain true for these primes. The complete numerical table of [7] for the 
irregular primes p < 30000 is included in our table deposited in the UMT file. 

The theoretical results of [7] depend upon the assumption that the irregular 
prime p does not divide the second factor +ho of the class number ho of Fo 
(even though p divides ho). It is pointed out in [17] that this assumption is true 
if the numerical test cited previously for Fermat's Last Theorem is satisfied. Our 
successful completion of this test for the irregular primes less than 30000 justifies the 
application of the theory of [7] to these primes. 

We now describe some results which we used to extend the time-consuming 
computations of [7] to 30000. For 1 <a < p - 1, let v(a) denote the unique 
p-adic (p - I)st root of unity such that v(a) a (mod p). We denote the p-adic 
expansion of v(a) by 

v(a) = a + v(a)1p + v(a)2p2 + , 0 v(a)n < p. 
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Following [7], we define for odd i, 1 < i S p - 4, the p-adic sums 

p-l 

A(p, i) = av(a) = + ao alp a2p2 + a, 0 a p 
a=1 

and 

p-1 

B(O i) = Ca,bbv(a)1 = bo + blp + b2p2 + , bn <P, 
a,b=1 

where Ca, b is defined to be the smallest nonnegative residue of v(a)1 + ab (mod p). 
It is known that ao = bo = 0 and that al = 0 if and only if (p, i + 1) is an 
irregular pair. The results of [7] follow once the values of a2 and b1 are shown 
to be nonzero. 

The time for the calculations of a2 and b1 can be shortened by -means of the 

symmetry which exists between the terms indexed by a and p - a in the sums 
above. Since v(a) is the unique (p - I)st root of unity satisfying v(a) a (mod p), 
it follows that v(p - a)-- v(a), and thus v(a), + v(p - a)n = P - 1 for n > 1. 

Letting m (p - 1)/2 and using the fact that i is odd, we obtain 

m 
A(p, i) = - (p - 2a)v(a)i. 

a=1 

Since 

Ca, b = v(a)1 + ab -p [(v(a)1 + ab)/p], 

we have 

P-i P-i 

B(p, i) = b E v(a)i v(a)l 
b=l a=1 

P-1 P-1 P-1 ,v(a) 1+ ab 
+ E b2 , av(a)i -p E b _ P v(a)l. 

b=1 a=1 a,b=l 

But 
p-l p-i p-l 

b Ej b2EE av(a)'EE0 (mod p) for p > 3, 
b=1 b=1 a=1 

and a formula of Friedmann and Tamarkine [3] is equivalent to 

p-1 
(1) , v(a)1 v(a)- Bj+ 1/(i + 1) (mod p). 

a=l 

Hence, if (p. i + 1) is an irregular pair, it follows that 

-B(p, i)lp a- E b v v(a (mod p). 

Now the fact that 
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[v(a)i +ab] + v -a), +(p-a)b] 

.~~~ p 

implies 

m P- 
a 

abai (mod p). 
a=1 b=1 L p 

The highly efficient recursion formulas which appear in [7] were used to calculate 
the inner sums above indexed by b. 

The fact that b1 is nonzero for all the irregular pairs (p, i + 1) of our table 
implies that ,p = 0 for p < 30000. The author [8], [9] has previously shown that 

pp= 0 for p < 8000 using other criteria. The tables of these papers have also been 
continued to 30000, giving us further verification that p-= 0 for p < 30000. The 
complete results of these computations are included in the table deposited in the UMT 
file. 

It should be noted that Iwasawa [5] and Metsankyla [14] have shown that 

1,p < (p - 1)/2 for the cyclotomic F-extensions defined above. Also, Iwasawa [6] 
has found a whole class of other F-extensions for which the corresponding invariants 
p are not only positive but assume arbitrarily large values. 

5. The Computations. All of the computations reported here were performed 
on the PDP-10 computer at Bowdoin College. Lengthy computations were done over- 
night when there was little demand on the time-sharing system. The programs were 
written in FORTRAN for the most part, but certain subroutines were rewritten in 
assembly language (MACRO) when it became clear that this could significantly reduce 
the execution time. For a single prime p near 30000, it took close to 22 minutes 
on the PDP-10 to test for irregularity and to determine all the irregular pairs (p, 2k). 
For such an irregular pair, it took nearly two minutes to complete the calculation for 
Fermat's Last Theorem, one minute to perform the calculations of [9] (including a 
long check), and less than 3?2 minutes to determine the values of a2 and b1. 

We used the criteria of [12] to search for the irregular primes. Checks for 
irregularity were inserted wherever possible in later programs. In the computation of 
b1, for example, we used Eq. (1) in the form 

m 

-Bi 1/( ? 1)(i (2v(a)1 + l)ai (mod p) 
a=1 

to verify the irregularity of the pair (p. i + 1). Another check for irregularity is 
described in [9]. If we take i = 1 and B2 = 1/6 in the equation above, we obtain 
the congruence 

m 
48 av(a) I -1 (modp). 

a=1 
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This provides us with a check on the computation of the digits v(a)1, 1 < a S m. 
Also, if (p, i + 1) is an irregular pair, then it can be shown that 

a2 =A0 + i(A1 -A0) (mod p), 

where Ao and A1 are defined by the congruences 

Bj+ I/(i + 1) -Aop (mod p2) and Bi+p/(i +p)= A1p (mod p2). 

Since AO and A1 are an essential part of the table of [9], their values became 
known and provided us with a check on the computation of a2. 

Note Added in Proof. As this manuscript was being submitted, the tables of 
[18] were made available to the author. The two tables of irregular pairs are in com- 
plete agreement up to 25000 (in fact, up to 26390). It was discovered, however, that 
the tables of [18] contain errors in the verification of Fermat's Last Theorem. These 
errors occur if and only if the value of P in the theorem of Section 2 exceeds 218 
= 262144, the first case being for p = 5227. 
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